
research papers

60 Grosse-Kunstleve and Adams � Special positions Acta Cryst. (2002). A58, 60±65

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 27 July 2001

Accepted 8 October 2001

# 2002 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Algorithms for deriving crystallographic space-
group information. II. Treatment of special
positions

R. W. Grosse-Kunstleve* and P. D. Adams

Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 4-230, Berkeley,

CA 94720, USA. Correspondence e-mail: rwgrosse-kunstleve@lbl.gov

Algorithms for the treatment of special positions in three-dimensional

crystallographic space groups are presented. These include an algorithm for

the determination of the site-symmetry group given the coordinates of a point,

an algorithm for the determination of the exact location of the nearest special

position, an algorithm for the assignment of a Wyckoff letter given the site-

symmetry group, and an alternative algorithm for the assignment of a Wyckoff

letter given the coordinates of a point directly. All algorithms are implemented

in ISO C++ and are integrated into the Computational Crystallography Toolbox.

The source code is freely available.

1. Introduction

When space-group symmetry is used in the description of

crystal structures, the problem of how to treat atomic sites in

special positions arises. By de®nition (Hahn, 1983, Section

2.11), a point in a special position is one that is mapped onto

itself by symmetry. This leads to the notion of the multiplicity

of a point, which is de®ned as the number of distinct equiva-

lent points per unit cell. If a point is not mapped onto itself by

any of the symmetry operations of the given space group, the

point is said to be in a general position, and the multiplicity is

equal to the order of the space group. For a point in a special

position, the multiplicity is a factor of the order of the space

group. This follows from Lagrange's theorem because the

symmetry operations that map a point onto itself form a point

group, the site-symmetry group, which is a subgroup of the

space group.

To determine the multiplicity of a point, the symmetry

operations are applied to the coordinates of the point. For

each symmetrically equivalent point, the distance to the

original point is computed. Since the atomic coordinates are

real numbers, these calculations are universally implemented

with ¯oating-point arithmetic. To compensate for the rounding

errors that are inevitably associated with ¯oating-point

arithmetic, a tolerance has to be admitted when determining if

a point is mapped onto itself by a given symmetry operation.

Necessarily, this tolerance must be very small. Otherwise the

results of subsequent calculations, such as structure-factor

calculations, would signi®cantly violate the space-group

symmetry.

If the determination of the multiplicity of a point is exclu-

sively based on ¯oating-point distance calculations, it is

unfortunately impossible to devise a numerically stable

algorithm. Owing to the inevitable rounding errors, it may

happen that one symmetrically equivalent point is just within

the chosen tolerance and another one just outside. Conse-

quently, the multiplicity of the point will not be computed

correctly and results of subsequent calculations will be incor-

rect.

A simple method for ruling out incorrectly determined

multiplicities is to de®ne an exclusion radius and to raise an

exception if a symmetrically equivalent point is within this

radius around the original point but not within the tolerance.

This approach does not silently lead to incorrect results but

manual intervention is required if a problem is detected.

If a point is close to a special position but outside a

meaningful tolerance, in some contexts (e.g. Grosse-Kunstleve

et al., 1997) it is necessary to determine the exact location of

the nearest special position. An obvious approach is to

determine this location by averaging all symmetrically

equivalent points that are within a given radius around the

original point. However, the rounding errors associated with

¯oating-point arithmetic pose the same problem as discussed

above: one equivalent point may just be inside and another

one just outside the chosen radius. This may lead to an

incomplete group of symmetrically equivalent points (corre-

sponding to an incorrectly determined multiplicity), and the

average of the coordinates of such an incomplete group will

result in incorrect coordinates for the exact location of the

nearest special position.

To address these problems, in this paper we present

numerically robust algorithms for the determination of the

multiplicity of a point. Explicitly (x3) or implicitly (x6), these

algorithms involve the determination of the site-symmetry

group, which can then be used also for other purposes, such as

deriving a point-group symbol or moving a site to the exact

location of the nearest special position. We also present two

alternative algorithms for the assignment of Wyckoff letters.



One of these algorithms (x6) is probably similar to the algor-

ithm used by Le Page & Raymond (2001) but has the addi-

tional advantage of facilitating the determination of the exact

location of the nearest special position.

All the algorithms presented in this paper lend themselves

to a fully automatic treatment of atomic coordinates and are

therefore suitable for integration in highly automated soft-

ware systems, such as multisolution systems for structure

determination (e.g. Grosse-Kunstleve et al., 1997; Falcioni &

Deem, 1999; Weeks & Miller, 1999; Cerny & Favre-Nicolin,

2000) or the automatic processing and validation of large

databases where the need for human intervention is prohibi-

tive.

2. Notation

IT83: International Tables for Crystallography, Vol. A

(Hahn, 1983).

Space-group type: See de®nition in Section 8.2.1 of IT83

(Wondratschek, 1983). Two space groups belong to the same

space-group type if they correspond to the same entry in IT83.

Space-group representation: A particular group of

symmetry operations is a representation of the corresponding

space-group type. For example, the space-group representa-

tions denoted by the Hermann±Mauguin symbols Pmna,

Pnmb, Pbmn, Pcnm, Pncm and Pman all correspond to the

same space-group type (space group No. 53 in IT83). In

general, each space-group type has an in®nite number of

representations.

Matrices are enclosed by square brackets. However,

matrices shown in Jones±Faithful notation (for example x, y, z)

are not enclosed by brackets. For convenience, column vectors

are shown transposed and are enclosed by parentheses to

distinguish them from matrices [for example (0.1, 0.2, 0.3)].

The (R, T) formalism similar to that of IT83 is used. R is the

(3 � 3) rotation part or rotation matrix and T the (3 � 1)

translation part or translation vector of the operation.

Sets are enclosed in curly braces (for example {ÿ1, 0, 1}).

Half-open intervals are denoted as ]x, y] (x is not included, y

is included) or [x, y[ (x is included, y is not included).

A square matrix A is called unimodular if the absolute value

of the determinant of A is equal to one [|det(A)| = 1].

Z = set of integer numbers, R = set of real numbers.

3. Algorithm for the determination of the site-symmetry
group

The input parameters of the algorithm for the determination

of the site-symmetry group GX of a point X are: (i) unit-cell

parameters (for distance calculations); (ii) symmetry opera-

tions of the space group G; (iii) coordinates X of a point; (iv)

minimum distance �equiv_min between symmetrically equiva-

lent points of X (tolerance).

The symmetry operations of the space group G are repre-

sented by matrices of the form (R, T), where R is the rotation

part and the translation part T is given modulo Z.

The algorithm for the determination of the site-symmetry

group consists of the following steps:

1. Determination of the symmetry operations S = (R, T)

that have a translation part T without an intrinsic (screw or

glide) component and that lead to close contacts between X

and the symmetrically equivalent point SX. Pairs of S and

squared distances (X ÿ SX)2 are stored in a list of candidate

symmetry operations.

Details: The trial symmetry operations S are generated by a

loop over all symmetry operations Si 2 G. The symmetrically

equivalent point XS = SiX is computed, followed by the

determination of the difference �XS = XS ÿ X. The unit

translations of the space group are applied to �XS in the

form of the modulus operation to yield a vector �shortXS with

all elements in the range ]ÿ1
2,

1
2]. The symmetry operation

that corresponds to the mapping of X to �shortXS is de®ned as

Sshort = SiX + nearest_int(X ÿ �shortXS), where nearest_int(Y)

is a function that determines the vector J 2 Z3 that is closest to

Y 2 R3.

In most cases, Sshort will correspond to the ®nal S, but in the

general case it is necessary to loop over 27 additional

combinations of unit translations U (this is a 3-deep loop, each

over the three integers {ÿ1, 0, 1}) because the translation part

of Sshort could have an intrinsic component. The trial symmetry

operations S are determined as S = Sshort + U. The intrinsic

part of the trial S is determined with the algorithms in x4 of

Grosse-Kunstleve (1999). If the squared distance (X ÿ SX)2 is

less than (�equiv_min)2, S is stored in the list of candidate

operations for the site-symmetry group.

It should be noted that the determination of the squared

distance (X ÿ SX)2 involves the unit-cell parameters, for

example in the form of the metrical matrix, or alternatively an

orthogonalization matrix (see e.g. ch. 2 of Giacovazzo, 1992).

2. Sorting of the list of candidate symmetry operations by

squared distance, smallest distance ®rst.

3. Generation of the site-symmetry group GX starting with

the symmetry operation that has the smallest distance. The

symmetry operations are added to the group in the order in

which they appear in the sorted list and group multiplication is

carried out. If the group multiplication leads to a symmetry

operation with a pure translation, the operation that was

added last is discarded.

The group multiplication in step 3 ensures that the algor-

ithm is not negatively affected by rounding errors in the

distance calculations. The elimination of operations that lead

to pure translations ensures that the site-symmetry group is a

point group. If �equiv_min is large compared to the unit-cell

parameters, it can happen that X is close enough to more than

one distinct special position and that the whole set of candi-

date operations therefore generates a space group.

Given the operations of the site-symmetry group, the point-

group type can easily be determined with the algorithm

described in x5.2 of Grosse-Kunstleve (1999). This gives

immediate access to a point-group symbol for the site-

symmetry group. Using the algorithms for the characterization

of symmetry operations as described in x4 of Grosse-Kuns-

tleve (1999), it is straightforward to also derive an oriented
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site-symmetry symbol from the knowledge of the point-group

type and the operations of the site-symmetry group.

4. Algorithm for the determination of the exact location
of the nearest special position

The main steps of the algorithm for the determination of the

exact location of the nearest special position are:

1. Determination of the site-symmetry group GX according to

the algorithm in x3.

2. Determination of the special-position operator.

The special-position operator PX is the average of the

symmetry operations S of the site-symmetry group GX:

PX �
1

O�GX �
X

i

Si; �1�

where O(GX) is the order of the site-symmetry group and the

Si are the O(GX) symmetry operations.

Example:

space group: P6

unit-cell parameters: a = b = 10, c = 13 AÊ , � = � = 90,

 = 120�.
Using a tolerance of 0.5 AÊ , the symmetry operations of the

site-symmetry group GX of X = (0.35, 0.65, 0.1234) are:

x; y; z;ÿy� 1; xÿ y� 1; z;ÿx� y;ÿx� 1; z:

The sum of these operations is (1, 2, 3z), corresponding to the

special-position operator PX = (1=3; 2=3; z).

3. Determination of the exact location of the nearest special

position.

The exact location XP of the special position nearest to X is

de®ned by the average of all symmetrically equivalent points

of X in the site-symmetry group GX:

XP �
1

O�GX �
X

i

SiX: �2�

From this it follows that XP can be obtained as the product

XP � PXX �3�
Example:

PXX � �1=3; 2=3; z��0:35; 0:65; 0:1234�

�
0 0 0

0 0 0

0 0 1

264
375; 1=3

2=3

0

264
375

0B@
1CA 0:35

0:65

0:1234

264
375

� �1=3; 2=3; 0:1234�
The distance between X and XP is 0.29 AÊ .

5. Algorithm for the determination of the Wyckoff
letter for a given special-position operator

In general, the assignment of Wyckoff letters is ambiguous.

This is discussed in detail by Fischer & Koch (1983a). When

two assignments of Wyckoff positions are compared, opera-

tions of the af®ne normalizer (Fischer & Koch, 1983b) have to

be taken into account. The algorithm presented here will

produce one possible assignment of Wyckoff letters that is

determined by (i) the assignments for a reference setting and

(ii) the selection of a `canonical' change-of-basis matrix for the

transformation of symmetry operations from that reference

setting to a given space-group representation.

International Tables for Crystallography (Hahn, 1983)

(IT83) de®ne a Wyckoff position WG as the set of all points X

for which the site-symmetry groups XG are conjugate

subgroups of G.

Two subgroups XG and YG of G are conjugate subgroups if

there exists a symmetry operation M 2 G such that

YG � Mÿ1XGM: �4�
Equation (1) de®nes the special-position operator P as the

average of the symmetry operations of a site-symmetry group.

From this it follows that, if two subgroups of G are conjugate

subgroups, the condition

PY � Mÿ1PXM �5�
must hold, where PX is the average of the operations of XG and

PY is the average of the operations of YG.

To ®nd the Wyckoff letter for a given special-position

operator PX, a table is needed for each of the 230 space-group

types. These tables correspond to the tables labeled Positions

in ch. 7 of IT83. However, there are two important differences

between the tables needed for the algorithm that is described

here and the tables in ch. 7 of IT83:

(i) Only one representative operator per Wyckoff position is

needed from the Coordinates column of ch. 7 of IT83. The

other operators are simply products of the symmetry opera-

tions and the representative operator. [The idea of repre-

sentative operators is also found in Altermatt & Brown

(1987).]

(ii) The entries in the Coordinates columns of ch. 7 of IT83

are re-parameterized special-position operators. For example,

the ®rst entry for Wyckoff position f of space group P4212

(No. 90) is listed as (x, x, 1
2) (see also Table 1). However, the

operations of the site-symmetry group of, e.g., (0.1, 0.1, 1
2) are

Table 1
Table of representative special-position operators for space group P4212
(No. 90).

The representative special-position operators are the strict averages of the
symmetry operations of the corresponding site-symmetry groups. For
comparison, the ®rst entry in the Coordinates table of IT83 is also shown.

Multiplicity,
Wyckoff letter First entry in IT83

Representative special-
position operator

8 g x, y, z x, y, z

4 f x, x, 1
2

1
2 x+1

2y, 1
2x+1

2y, 1
2

4 e x, x, 0 1
2 x+1

2y, 1
2x+1

2y, 0

4 d 0, 0, z 0, 0, z

2 c 0, 1
2, z 0, 1

2, z

2 b 0, 0, 1
2 0, 0, 1

2

2 a 0, 0, 0 0, 0, 0



x; y; z; y; x;ÿz� 1:

This leads to the special-position operator (1
2 x + 1

2 y, 1
2 x + 1

2 y, 1
2).

Comparison with the entry in IT83 shows that x in ch. 7 of

IT83 corresponds to 1
2 x + 1

2 y in the special-position operator.

The parameterization of the special-position operators in

ch. 7 of IT83 is convenient for a human reader but not in

general useful for the purposes of the algorithm presented in

this section. Therefore new two-column tables were derived

from the tables as found in ch 7 of IT83. As an example, the

table for space group P4212 (No. 90) is shown in Table 1. The

®rst column of each table lists the Wyckoff letters along with

the position multiplicities as listed in ch. 7 of IT83. The second

column lists the corresponding representative special-position

operators PW that are the strict averages of the symmetry

operations of the corresponding site-symmetry groups.

A table of representative special-position operators PW is

provided for a reference setting for each of the 230 space-

group types. To obtain the PW for an arbitrary space-group

representation, the PW are transformed using a change-of-

basis matrix that transforms the given symmetry operations to

the setting for which the reference table was computed. This

transformation property follows immediately from the fact

that the PW are averages of symmetry operations. The change-

of-basis matrices are determined with the algorithm for the

determination of the space-group type that is described in x5
of Grosse-Kunstleve (1999) and then combined with the

operations of the af®ne normalizer. Each product of a given

change-of-basis matrix and an operation of the af®ne

normalizer is an alternative change-of-basis matrix. Since the

assignment of Wyckoff letters is in general ambiguous and

depends on the exact choice of the change-of-basis matrix, a

`canonical' change-of-basis matrix is selected. The selection is

based on a set of rules that ensure that the selected matrix is

independent of the order in which the alternative matrices are

generated. This ensures a reproducible assignment of Wyckoff

letters for any given space-group representation.

To determine the Wyckoff letter for a given special-position

operator PX, and given a table of representative PW for the

given space-group representation G, the M 2 G has to be

found that solves the equation

PX � Mÿ1PW M: �6�

Since both the multiplicity of X and the multiplicity corre-

sponding to each PW are known, comparison of these is used

as a pre-selection.

For the remaining PW in the table, the solution of (6) is

implemented as a trial-and-error algorithm with a predictably

®nite number of trials that is less than or equal to the order of

G, per candidate PW . Trial matrices for M are derived from the

symmetry operations of G. Let R be the rotation part of a

symmetry operation of G and T be the corresponding trans-

lation part modulo 1. A trial matrix M is de®ned as

M = (R, T + U), where U is an unknown integer vector of

unit translations. Rearrangement of (6) and substitution of

M = (R, T + U), PX = (RX, TX) and PW = (RW, TW) leads to:

MPX � PW M , �R;T � U��RX;TX � � �RW ;TW ��R;T � U�:
�7�

U is the only unknown in this equation. Elementary re-

arrangement leads to

�RRX;RTX � T � U� � �RW R;RW �T � U� � TW �: �8�
The condition

RRX � RW R �9�
is used as a second pre-selection for the candidate PW from the

table of Wyckoff letters. For the remaining PW, the unknown U

is determined as the solution of

RTX � T � U � RW �T � U� � TW , �RW ÿ I�U
� RTX � T ÿ RW T ÿ TW ; �10�

where I is the (3 � 3) unit matrix. Equation (10) is of the

general form

Mx � b; x 2 Z: �11�
Comparison with (10) leads to M = (RW ÿ I), x = U, b =

RTX + T ÿ RWT ÿ TW. A procedure for solving (11) is given

by, for example, Domenjoud (1991). Let r be the rank of M.

There exist then two unimodular matrices P and Q such

that:

PMQ � D 0

0 0

� �
: �12�

D is an (r � r) diagonal matrix and the 0's stand for null

matrices of suitable sizes.

The determination of P and Q amounts to computing the

Smith normal form. A procedure for this is given, for example,

in x5.5 of Grosse-Kunstleve (1999).

Any solution of x is then of the form Qx0, where x0 is a

solution of

D 0

0 0

� �
x0 � Pb: �13�

Checking the satis®ability of equation (13) and computing the

solution is straightforward. If equation (13) has a solution for a

given PW, both the Wyckoff letter and the matrix M =

(R, T + U) are determined simultaneously.

An M that solves (4) is necessarily a solution of (5) but it is

not immediately clear that the converse is also true. A rigorous

proof for this is currently not available. However, we were

able to show empirically that (5) combined with the condition

that the multiplicity of the site-symmetry group of X and the

multiplicity of the Wyckoff position must be equal can be used

as a necessary and suf®cient condition. This was performed by

comparing the Wyckoff letters assigned with the algorithm in

this section with the letters assigned by the alternative algor-

ithm that is presented in the next section. The two algorithms

produce consistent results for a very large number of test cases

that include all conventionally used space-group representa-

tions and an additional large number of unconventional

settings.
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6. Algorithm for the determination of the Wyckoff
letter given the coordinates of a point

The input parameters for the algorithm for the determination

of the Wyckoff letter given the coordinates of a point are: (i)

unit-cell parameters (for distance calculations); (ii) symmetry

operations of the space group G; (iii) coordinates X of a point;

(iv) minimum distance �near to the nearest special position of

X (tolerance).

The algorithm consists of the following steps:

1. Construction of a table of representative special-position

operators PW as explained in x5.

As before, the PW are strict averages of the operations of a

site-symmetry group. To facilitate the algorithm presented in

this section, the locations XW to which the PW apply are chosen

such that all elements of the vector XW are in the range ]ÿ1
2,

1
2].

2. Application of the unit translations to X:

X0 � mod short�X�: �14�
mod_short is a function that applies the unit translations to the

elements of X such that the elements are in the range ]ÿ1
2,

1
2].

The unit shifts applied are de®ned as U0 = X0 ÿ X.

3. For each PW, starting with Wyckoff position a and

working upwards in the alphabet, the shortest distance

squared

�PW � �PW M0X0 ÿM0X0�2; �15�
with M0 = (R, T + U0), is computed in a loop over all symmetry

operations (R, T) 2 G and unit shifts U0 with vector elements

in the set of integers {ÿ1, 0, 1} (i.e. the number of loop itera-

tions is 27 times the order of G, per PW). The symmetry

operations of G are manipulated such that the elements of T

are in the range ]ÿ1
2,

1
2].

4. The Wyckoff letter for X is determined by the ®rst PW for

which the smallest �PW < �near. The exact location XP of the

special position nearest to X is determined as

XP � Mÿ1PW MX: �16�
M is de®ned as M = M0 + RU0 = (R, T + U0 + RU0), with the

M0 that corresponds to the smallest �PW < �near.

In this algorithm, the problem of determining U is solved in

two steps, instead of one as in the algorithm of x5. The ®rst

step is to bring X within �1 unit translations of the space

where the PW are known to apply [equation (14)]. The

remaining unit shifts U0 are determined with a trial-and-error

approach.

7. Discussion

The central algorithm presented in this paper is that for the

determination of the site-symmetry group (x3). This algorithm

determines the multiplicity of a point in a numerically robust

way, and at the same time provides the information from

which the special-position operator can easily be computed

(x4). This special-position operator can then be used to move a

site to the exact location of the nearest special position.

In x5, we show that the Wyckoff positions as listed in IT83

are re-parameterized special-position operators. We have

derived tables of representative special-position operators for

the Wyckoff positions of 230 reference space-group repre-

sentations (one for each of the 230 space-group types) where

the operations listed in IT83 are replaced by the corre-

sponding special-position operators. This table facilitates the

determination of a Wyckoff letter for a given point. The

Wyckoff letter can then be used in turn to obtain the special-

position operator PW from the table. To explain how the

special-position operator PW that is produced by either of the

alternative algorithms in xx5 or 6 can be used, we will analyze

the combination of (3) and (6), which is identical to (16):

XP � Mÿ1PW MX: �17�
MX is a symmetrically equivalent point of X for which PW is a

special-position operator. Mÿ1 is another symmetry operation

of G that maps the exact location of the special position as

de®ned by PW back to the special position that is nearest to X.

In applications where it is not important which symmetrically

equivalent point of X appears in a symmetry-unique set of

sites, X in this set could be replaced by MX and the Wyckoff

letter for this site could be stored. In computing intensive

calculations, such as structure-factor calculations, the Wyckoff

letter could then be used as a reference into a table of lists of

non-redundant symmetry operations for each Wyckoff posi-

tion. This leads to implementations that are both robust and

fast.

The alternative algorithms for assigning Wyckoff letters and

computing special-position operators are largely inter-

changeable. The question of which one is best selected has to

be answered for each application individually. In most cases, it

is expected that the combination of the algorithms in xx3 and 5

is slightly faster than the algorithm in x6, especially if the

number of sites in general positions is large. If the operations

of the site-symmetry group are needed, for example to derive

a symbol for the point-group type, clearly the algorithm in x3
has to be used. In such a case, the special-position operator is

already known and it is always best to use the algorithm in x5
for the assignment of Wyckoff letters.

The algorithms presented in this paper are building blocks

that are intended for integration into a highly automated

software system where a fully automatic and robust treatment

of atomic coordinates is essential. The choice of a modern

programming language (ISO C++, International Standardi-

zation Organization et al., 1998) that supports a modular

system design through object orientation and exception

handling ensures both ease of use and a high degree of ¯ex-

ibility.

8. Source-code availability

All algorithms that we present in this paper are implemented

in ISO C++ and are integrated into the Computational Crys-

tallography Toolbox (cctbx). The cctbx source code is freely

available under an Open Source license for both non-pro®t

and commercial use at http://cctbx.sourceforge.net/. The tables



of representative special-position operators PW (x5) are

included in the source code. They may also be accessed via an

end-user friendly web interface at http://cci.lbl.gov/servers/

(`Explore symmetry' example).
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